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Abstract: We studied the critical properties of flexible polymers, modelled by self-
avoiding random walks, in good solvents and homogeneous environments. By applying the
PERM Monte Carlo simulation method, we generated the polymer chains on the square and
the simple cubic lattice of the maximal length of N=2000 steps. We enumerated
approximately the number of different polymer chain configurations of length N, and
analysed its asymptotic behaviour (for large N), determined by the connectivity constant p
and the entropic critical exponent y. Also, we studied the behaviour of the set of effective
critical exponents vy, governing the end-to-end distance of a polymer chain of length N. We
have established that in two dimensions vy monotonically increases with N, whereas in three
dimensions it monotonically decreases when N increases. Values of v, obtained for both
spatial dimensions have been extrapolated in the range of very long chains. In the end, we
discuss and compare our results to those obtained previously for polymers on Euclidean

lattices.
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1. INTRODUCTION

The self-avoiding walk (SAW) is a random walk
that must not intersect itself, and on a lattice, it can be
formed as a random path of a SAW walker that steps on
neighbouring previously non-visited lattice sites. The
SAW property of path non-overlapping emulates very
well the so-called excluded volume effect of polymers,
and the SAW model is widely accepted as the standard
model of a linear polymer in a dilute solution [1]. The
SAW model can be successfully applied to study a
single polymer chain in both good (non-consecutive
monomers of a polymer chain do not interact
mutually) and poor solvents (there are distinct
monomer-monomer interactions within a polymer
chain) [2]. In research of statistical properties of SAWSs,
the special interest is devoted to the critical behaviour of
very long SAW chains (N — oo) described by various
critical exponents. It has been shown that the SAW model
is equivalent to the n-component spin model in the limit
n — 0 [3], so that a correspondence between models of
linear polymers and magnetic systems occurs. For most
of the studies of statistical properties of SAWSs a
necessary step is finding the number of different
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configurations (i.e. the number of possible states) for an
N-step SAW system. To investigate the asymptotic
behaviour of SAWs it is plausible to enumerate SAWSs
of finite lengths N and then extrapolate the obtained
results of related quantities in the limit 1/N — 0 of
very long chains.

Exact counting of different SAW configurations of
the length N on a lattice is very demanding combinatorial
task, and so far SAWs of the maximal length Ny, =79
[4] have been enumerated on the square lattice, whereas
on the simple cubic lattice the maximal length is
N,ax=36 [5]. The reached values for N,,,,, are still far
from the asymptotic region of very long chains, and
another method for sampling SAWSs for larger Ny,qx
should be used. To this end various types of Monte Carlo
methods have been invented [6], and in this study we
utilise the pruned-enriched Rosenbluth-Rosenbluth
method (PERM) [7], which is a static Monte Carlo
algorithm for SAWSs sampling. The PERM enables
building of SAWSs of different lengths N (up to
predefined maximal value), and it appeared to be very
efficient for approximate counting of SAW
configurations of large length. Also, during the
simulation of SAWs with this method it is possible to
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evaluate the averages of various observables within
created N-step SAWSs ensembles, and then, from
obtained data, analyse their critical behaviour.

The present paper is organized in the following
way. In section 2, we define the main quantities
related to the lattice SAW model and expose the basic
ideas of the PERM Monte Carlo method for
simulation of SAWSs on the square and the simple
cubic lattice. In section 3 we present the obtained
numerical results for critical exponents v (related to the
mean squared end-to-end distance of SAWSs) and y
(associated with the total number of distinct SAWS),
as well as results for the connectivity constant p
representing the effective coordination number of the
SAW (i.e. the average number of possible next steps
to the walker having already made a large number of
steps). In the same section we discuss and compare
our findings with those obtained by other methods.
Eventually, a short conclusion is given in section 4.

2. SIMULATION OF SELF-AVOIDING
WALKS ON LATTICES WITH
PRUNED-ENRICHED ROSENBLUTH-
ROSENBLUTH METHOD

In order to describe the statistics of the SAW
model on a lattice we assign the weight x (fugacity) to
each step of the walk, so that a SAW consisting of N
steps has the weight x". Thus, the generating
function for SAWs of all possible lengths is of the
form

C(x) = XN=1Cnx". 1)
Here Cy is the total number of distinct N-step SAWs
which, in the long chain limit, behaves as
Cy~uNNY~1, (2)
where vy is the entropic critical exponent, and p is the
connectivity constant. Another quantity describing
metric properties of N-step SAWSs is the mean
squared end-to-end distance (R% ), determined by the
scaling law

(RW)~N?, ®)
where v is the corresponding critical exponent,
presuming that the number of steps N is quite large.

Here we note that v and y are universal critical
exponents, that is (for the SAW model) their values

only depend on the space dimension of underlying
lattice, while the connectivity constant p is a lattice
dependent quantity.

In this paper we apply the PERM Monte Carlo
method to calculate the connectivity constant p and
critical exponents y and v of flexible SAWs on the
square and simple cubic lattice. The PERM method is
an improved version of the Rosenbluth-Rosenbluth
(RR) chain growth algorithm [8] for sampling SAWSs
of different lengths on a lattice. Starting from an
arbitrary lattice site, in RR method, the SAW chain
develops by adding a new step to the existing SAW
chain. The added step is chosen randomly from the
set of free neighbouringsites, and the process of SAW
growth (from the origin, with N = 0) is called the
tour. The step adding procedure is repeated until the
chain reaches the given maximal length N, ., or the
SAW walker gets stuck (i.e. there is no free
neighbouring sites for further growth). The SAWSs
generated in RR method are biased, because the
occupied neighbouring sites are not taken into
account for the next step random choice, so that the
sampled N-step walks have different statistical
weights depending on their configuration. This
weight, for an N-step SAW in RR method is

Wy = TInze a(n), (4)
where a(n) is atmosphere of the walk [9], that is the
number of free (previously non-visited) neighbouring
sites for a growing SAW after n steps (n < N). For the
square lattice the beginning value for the atmosphere
is a(0) = 4, while for the simple cubic lattice it is
a(0) = 6 (see Figure 1). The total number of distinct
SAWs Cy in RR method can be evaluated as an
average

. |
Cy = (Wy) = - 52, Wy, (5)

where s, is the number of starting SAWSs and sy, is
the number of SAW samples of length N [10].
Calculation of Cy enables us to find out the values of
p and vy, while the metric critical exponent v can be
extracted from (R%), which in RR method can be
calculated as

2N, WP IRE1D
2\ — 2= Wy RN
(RR) = =g ©)

where [R%]® is the squared end-to-end distance of
an N-step SAW sample whose RR weight is WAEL).



Ivan Zivié, Monte Carlo simulations of a polymer chain model on euclidead lattices

Contemporary Materials, X-2 (2019)

Page 169 of 174

(d=2)

@=3)

Figure 1. Examples of SAW path on the square (d=2) and on the simple cubic lattice (d=3) with N=14 and N=16 steps,
respectively. The full circles are starting, and open ones are ending points of the SAWSs. The RR weight of the SAW on the
square lattice is Wi4= 4 - 38 22 . 3.22, while for the SAW on the simple cubic lattice it is W15=6-5%4-5%.4%.5.4.5.4.5.3,

The RR method becomes ineffectual when we
want to create longer SAW samples, because an
accented attrition of starting SAWSs appears (i.e. large
number of SAWSs became trapped before reaching a
desired length). Besides, the obtained SAW statistics
are usually fairly distorted since the SAW samples
with very high RR weights (which are infrequent)
produce a very large variance in RR weight statistics.
To resolve these problems an upgraded version of RR
method, called the PERM, has been introduced,
where we prune SAWSs with low weights and enrich
SAWs with large weights [7]. To apply pruning or
enriching transformation of an N-step SAW, for the
SAW weight we define two milestones Wy and Wy,
by the relations

2 2
wi =z (2, wi=wo(2).
If Wy < Wy, the SAW is pruned (killed) with the
probability 1/2. If the SAW survives pruning, we
double its weight (1 - Wy —>%- 2Wy). On the other
hand, in the case that Wy > Wy we apply the
enriching transformation, that is we replace a SAW
configuration of the weight Wy with two copies of
the halved weight (1- Wy — 2 - =), In this way the
N-step SAW weights W), of different SAW samples
stay close to (W ). Here we note that pruning and

enriching transformations do not alter the values of
Cy and (R%) calculated from (5) and (6).

3. RESULTS AND DISCUSSION
Applying the PERM method, we have created

SAW chains of various lengths N (up t0 Njqx =
2000), on both the square and the simple cubic

lattice. In one simulation session, for each N we have
made a set of SAW chains consisting of s =~ 4.37 -
108 SAW samples on the square lattice and sy =~
1.22 - 108 samples on the simple cubic lattice. To
analyse the obtained large sets of data we follow the
approach developed in [11], where we have studied
semi-flexible polymer chains on the square lattice.
Here we expanded the simulation data for flexible
polymer chains in two dimensions and extend this
study in three dimensions.

Since in our Monte Carlo experiment, we have
created SAWSs with finite length N, the formula (2)
for the total number of different configurations
(which is valid for N — o) should be corrected to

Cy = Ac"NY (14 22, 2+ 52073) . (8)
The first sum (with integer powers) corresponds to
the analytical correction terms, while the second one
(where A is not an integer) describes the non-
analytical correction terms. In two dimensions A =
3/2 > 1 [12] and the leading correction term in (8) is
analytical 1/N, while in three dimensions A =
0.528(12) < 1 [13] so that the leading correction
term is non-analytical 1/N2. To evaluate the values
of u and y we analysed the ratio

Bty (14 @ -Dg+), )
whereupon one can see that the leading correction
termis 1/N for both d = 2 and d = 3 case. We notice
that, in d = 2 the second correction term is 1/N?2,
while ind = 3 it is stronger 1/N1528, From (9) we

see that for large enough N, the ratio % should
N

display a linear dependence on 1/N. Since in our
Monte Carlo experiment, for various N, we have
measured the values of Cy (in accordance with the
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relation (5)), we have been able to study the ratio
SN+1 a5 function of N and /N (see Figure 2), for both
sqﬁare (d = 2) and simple cubic (d = 3) lattice. We
see that the function CZ—;(l/N) is linear, so that

using (9) one can determine p and vy fitting the
obtained Monte Carlo data, presented in Figure 2. The

fitting technique is similar to the one applied in [11].
We constitute sets of data {1 C"’“} where N belongs
N

to the range [Npin, Nmax] With fixed Ny,q, =1999.
Then we change incrementally the value of N,,,;;, to
get the set of estimates w(N,;,) and y(Nmin),

obtained by weighted linear fits of data{ Ch1
the range [Njin, 1999] .

}, in
These estimates are

presented in Figure 3 as functions of N,,,;,,, for both
the square and the simple cubic lattice. From these
data (obtained from one simulation session) the final
results for u+ Au and y £ Ay we obtain as an
average of uW(Ny,;n) (as well as y(Np,i,)) in a region
where they appeared to be stable (see Figure 3). We
repeat this analysis from data collected from ng
independent Monte Carlo sessions (ng = 26 for the
square lattice and ng = 22 for simple cubic lattice)
obtaining ng results: u® + Au® and y® + Ay®
(i=1,..,ng), for p and y. The final numerical
assessment of the connectivity constant p and the
entropic critical exponent y is calculated as a
weighted mean of p® and y®, respectively. The
evaluated numerical values are given in Table 1.
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Figure 2. Values of the ratio Cn+1/Cn for SAWs on the square (d=2) and the simple cubic (d=3) lattice presented as a
function of chain length N (left panels), and 1/N (right panels). Also, we have depicted the error bars related to Cn+1/Cn (0N
the left panels), while horizontal lines (on left panels) and arrows (on right panels) correspond to the extrapolated

values in the limit N — oo.
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Figure 3. Numerical results for the connectivity constant L and the critical exponent y as functions of N,,;,, obtained
from weighted least squares linear fit of Cn+1/Cn against 1/N. The upper panels correspond to the square lattice (d=2),
and the lower to the simple cubic lattice (d=3). The pairs of vertical dotted lines denote the range of N,,,;,where
analysed data are stable, whereas full horizontal lines represent the average values of data covered by corresponding
intervals.

Table 1. Values of the connectivity constant u and critical
exponents y and v, obtained via PERM Monte Carlo
simulation method for the square (d=2) and the simple
cubic (d=3) lattice. The figures in the brackets are single
standard errors connected with the last two digits of the
main results.

n Y v
d=2 | 2.6381586(14) | 1.3433(05) | 0.74999(02)
d=3 | 4.6840399(09) | 1.1578(02) | 0.58785(07)

First, we discuss results for the square lattice.
Our Monte Carlo result for the critical exponent
v=1.3433(05) is very close to the exact value
43/32=1.34375 proposed by Nienhuis [14], and
deviates from it 0.034%. The result for the
connectivity constant p=2.6381586(14) is more
precise then the value p=2.63818(3) obtained
previously using the same PERM method [15]. Also,
our finding for p agrees very well with high precision
estimates 2.63815853035(2) [16] and
2.63815853032790(3) [17] obtained recently
utilising very efficient transfer matrix methods. On
the simple cubic lattice, our result for entropic critical

exponent y=1.1578(02) is consistent with numerical
ones obtained by Monte Carlo simulations
vy=1.1573(02) [18], exact enumeration method
v=1.15698(34) [5] and conformal field theory
v=1.1588(26) [19]. Finally, our estimate for the
connectivity constant p=4.6840399(09) is more
precise then existing exact enumeration result
u=4.6840401(50) [5] and Monte Carlo estimate
u=4.6840386(11) [20].

Next, we study the critical exponent v. The
scaling relation (3) is valid in the asymptotic region
of very long SAWSs (N — o). For SAWSs of finite
length N, we must consider the correction terms, so
that we use the scaling equation

(RZ) = ArN?’ (1+ 22, 2+ 320 —k).  (10)
which is analogous to (8), with the same values for
the exponent A describing non-analytical correction
terms (for the square lattice A =3/2 and for the
simple cubic lattice A = 0.528(12)). To estimate v
from obtained Monte Carlo data of (RZ), we define a
set of effective critical exponents [21] with the
formula
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(RE)
(Ri2) "
which are calculated up to Ny, 4, = 2000, with step 2
for N, for both d=2 and d=3. To analyse the behaviour
of vy, for large N we insert (10) in (11). For the square
lattice (d=2) we obtain

1
N = 51082 (11)

1

Vy =V — mﬁ s (12)
whereas for the simple cubic lattice (d=3) it follows
vy =V — 0441, 1 (13)

In4 NOS528°
From (12) we may perceive that in two dimensions
vy should behave as a linear function of 1/N, while

from (13) we see that in three dimensions v, should
behave as a linear function of 1/N 528 The expected
behaviour of vy against 1/N (1/N°528) for the
square (simple cubic lattice) is depicted on the left
panels of Figure 4. From d = 2 graph one can see
that in two dimensions v, monotonically increases
with N and approaches the limiting value v =
hm vy from below, which implies that r; > 0 in

equatlon (12). On the other hand, in three dimensions
(d = 3) one may observe that vy decreases with N,
which in (13) brings about r;{ < 0.
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Figure 4. On the left panels we have presented Monte Carlo results for the effective critical exponent vy for SAWs on
the square (d=2) and simple cubic (d=3) lattice as function of 1/N (for d=2) and 1/N %528 (for d=3). On right panels
we presented estimates of the critical exponent v (together with their error bars) as functions of N,,,;,,, obtained from
weighted least squares linear fit of {1/N, vy} for d=2 and {1/N°528, vy} for d=3, in the range [N,,,;,, 2000]. The
pairs of vertical dotted lines denote the range of N,,;,, where estimates of v(N,,;,,) emerge to be stable. The arrows (on
left panels) as well as full horizontal lines (on right panels) designate extrapolated values of vy for N — oo,

The limiting values v=1\llim vy for both

dimensions (d = 2 and 3) are determined applying
the weighted linear fit of data presented on the left
panels of Figure 4. To accomplish this task, we follow
the procedure applied in the case of p (for details see
caption of Figure 4) and our definitive estimates for v

are listed in Table 1. For d = 2 we can compare our
Monte Carlo estimate with the exact result 3/4 [14].
One can see that our finding v=0.74999(02) is quite
close to 3/4 (with relative error 0.001%), and it is
more accurate than v=0.7489(21) [22] recently
obtained by Monte Carlo method that used non-
reversed random walk algorithm to generate SAWSs.
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On the other hand, for
d =3 our finding v=0.58785(07) coincides with
numerical ones obtained by Monte Carlo methods
v=0.58765(20) [18],  v=0.587597(7) [13],
v=0.5876(14) [22], exact enumeration method
v=0.58772(17) [5] and conformal field theory
v=0.5877(12) [19].

Overall, we may infer that the applied PERM
Monte Carlo algorithm came out to be very efficient
method for sampling long polymer chains in order to
learn numerical values of quantities describing
critical properties of linear polymers. Especially, our
numerical findings for the connectivity constant p and
the critical exponents y and v, studied on Euclidean
lattices, appeared to be very accurate and consistent
with the results obtained by other methods utilised in
studies of polymer statistics.

4. CONCLUSION

We have applied the PERM Monte Carlo chain
growth algorithm to simulate polymer chains,
modelled by self-avoiding random walks (SAWSs), in
two and three dimensions. Particularly, on the square
and the simple cubic lattice, for SAWSs of the maximal
length of 2000, we have enumerated approximately
the number of different SAW configurations and we
have studied the behaviour of effective critical
exponents vy for the end-to-end distance of a
polymer chain of finite length N. We have found out
that on the square lattice vy, monotonically increases,
whereas on the simple cubic lattice it monotonically
decreases with N. Also, we analysed the asymptotic
region of large chains (N — oo), for which we have
evaluated the values of critical exponents v and y that
govern the mean squared end-to-end distances of
polymer chains and total number of different SAW
configuration, respectively, as well as the connectivity
constant p (representing the effective coordination
number of the SAW, for very long chains). Our results
(given in Table 1) are consistent with the results
previously obtained with other methods. The
performed study has been made for a limited length
of polymer chains (up to 2000 steps) and we believe
that our result may be additionally improved
simulating SAWSs of larger length.
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MOHTE KAPJIO CUMVYJIAIUJE MOAEJIA ITOJIMMEPHOI'
JIAHIOUA HA EYKJIIMACKHM PEINETKAMA

Caxerak:

[lpoyuaBane cy KpuUTH4YHE OCOOMHE (ISKCHOMIHUX IIOJIUMEpa,

MO/JICJIOBAaHUX CaMOHeNpecelajyhiuM ciydajHOM LIeTHhaMa, y JOOpHM pacTBapaunMma U
xomoreHuM cpenunama. Ilpumewyjyhu PERM Monre Kapimo meron, cumynupanu cy
MOJMMEPHH JIaHIM Ha KBaJpaTHO] W NMPOCTO] KyOWYHO] PELIETKH, MaKCHMallHE IY)KHHE
N = 2000 kopaka. AIpOKCUMaTHBHOM METOJIOM NpeOpojaBaH je yKynaH Opoj MOJIMMEepHHUX
KoHpurypanuja ayxuae N, 1 aHATH3UPAHO je ’EroBO aCHMIITOTCKO TTOHAIIAKE (32 BEIUKO
N), onpeheHO KOHCTAaHTOM IOBE3aHOCTH [\ M EHTPOIMjCKUM KPUTHIHHUM EKCIIOHEHTOM Y.
Takohe je mpoy4yaBaHO NOHAIIAKE CKyNa €PEKTUBHUX KPUTHIHMX EKCIIOHEHATa Vy, KOjU
onpelyjy pacrojame m3mel)y kpajeBa momumepHor aHna xykuae N. YcraHOBIBEHO je na y
JBOAMMEH3MOHOM CIIy4ajy Vy MOHOTOHO pacTe ca mopactoM N, IOK y TpH JeMeH3Hje Vy
MOHOTOHO omaja kaxa N pacre. 3a 00e TUMEH3H]j€ BPSIHOCTH 3a Vy €KCTPAIOJIHPAHEe Cy 3a
o0JacT laHana jako BeNMKUX nyxuHa. JloOujeHn pe3ynratu ¢y TUCKyTOBaHHU U nopeljeHu ca
paHuje JoOHjeHNM pe3ysTaTiMa 3a ToJIMMEpe Ha eYKIHACKUM peleTKama.

Kibyune peum: monmmepu, Monre Kapio cumynaumje, MOAenn Ha pelieTkama,

KPUTHUYHH CKCIIOHCHTH.
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