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Abstract: Computational experiments with double pendulum, Tacker’s oscillator
and steel beam, described by Duffing equations, are performed. We assume that a fluid
drives the oscillator by fluctuating force. The considered complex motion is a combination
of deterministic chaos and stochasticity. If amount of the fluctuating force is large enough
(the number of fluid particles interacting with the oscillator is then large), oscillator motion
becomes ordered. Similar result is obtained in the Lorenz model, when considering a part of
the Earth atmosphere interacting with surrounding air.
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1. INTRODUCTION

Emergence is a collective behavior of a large
number (which approaches infinity) of microscopic
parts, qualitatively different from behavior of
individual parts. Laminar and turbulent fluids flow
are examples of emergent phenomena [1]. Vince
Darley defines emergent phenomena as one for
which simulation is the optimal way of prediction
[2]. Emergence of order is considered as topic of
biology, geology, physics, chemistry, engineering
and mathematics [3].

Ferromagnetism, non-conventional superconduc-
tivity and mechanical properties of graphene,
quasiparticles and arrow of time are emergents [4].
Interaction of X-rays, electrons, neutrons and probes

with superlattices PbTiO, / SrTiO, causes emergence

of new phases [5]. Life [6] and macroeconomy [7] are
emergents.

If an emergent phenomenon is in principle
reducible to microphysics, even though the behavior
of the whole cannot be determined by the behavior
of the parts, then this is a weak emergence. If
emergent properties generally cannot be reduced to
microphysical properties, then this is a strong
emergence [6].
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The most prominent researchers of emergent
phenomena are Philip Anderson [8] and Robert
Laughlin [9,10]. They considered moving physics
away from reductionism necessary. Complexity is
understood if we understand emergence - the
appearance of properties on a larger scale unrelated
to the properties of parts of the system. This is a
picture of the world significantly different from the
reductionist picture of Paul Dirac's world, which
implies a mathematical description of all phenomena
based on fundamental laws. Philip Anderson, unlike
Paul Dirac, considers the laws of solid state physics
as fundamental as laws of particle physics.

Here we observe complex motion of a double
pendulum [11], Thacker oscillator [12], steel bar in
the Duffing model [13] and the Earth's atmosphere
in the Lorenz model [14]. In all four cases, we
assume the action of a fluctuating force (Figure 1).
Complex motion is a combination of deterministic
chaos and stochasticity. While chaos is predictable
in the short term, stochasticity is completely
unpredictable. We will show that as the number of
interacting particles increases, accompanied by an
increase in the intensity of the fluctuating force, the
order of motion increases.


mailto:zoranrajilic@netscape.net

Zoran Rajili¢, et al., Emergence of ordered motion of the oscillator driven by fluctuating force
Contemporary Materials, XI-2 (2020) Page 123 of 127

» 2. DOUBLE PENDULUM

Two bars, AB and BC , whose masses are
* m, and m,, lengths L, and L, , are oscillating

around the axes passing through points A and B .

o We solve differential equations
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Figure 1. Fluctuating force F, (t), with certain

realization of series of random numbers in a certain

interval. For same interval, various realizations of a

series of random numbers are possible. Time step is
h=0.05.
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dt

where o and B are angular displacements, @, and ~ and second axes and x is a damping ratio [11].

o, angular velocities of rods with respect to first We calculate with

m =4.23m, =213 L, =1.14, L, = 2.24, (0) =1.49, A(0) = 2.99, v, (0) = 3, (0) =0, x = 0.6 . (2.5)
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Figure 2.1 Angular velocity of the first pendulum for —3<F, <-2.7. Unit of time is h=0.05.
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Figure 2. Angular velocity of the first pendulum for —70< F, <-63.
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Figure 3. Angular velocity of the first pendulum for —70 < F, <-63 (second realization of a series of random
numbers). After a long enough period approximate periodicity appears.

3. THACKER OSCILLATOR do
= o(t) (3.1)

Thacker oscillator is used in laboratory d
exercises in non-linear dynamics course [12]. do B. si B i ot =
Magnet with dipole moment x is inserted in a E_'”( 1 Sing+ B, cospsina;t) —xw +F

magnetic field B, which is generated by one pair of (3.2)
coils and magnetic field B, sina,t which is where ¢ is angular displacement of a magnet and

generated by second pair of coils (directions of these i Is damping ratio. We assume
two fields are normal to each other). We solve

equations
u=73B,=18B,=81m,=18x=0.8¢0)=-51w00)=71 (3.3)
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Figure 4. Angular velocity of the Thacker oscillator for -7 <F, <-6.3.
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Figure 5. Angular velocity of the Thacker oscillator for —30<F, <-27.
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4. DUFFING OSCILLATOR ]
av_ 6.9x—11.74x> —0.02v +3.2sin9.1t + F, (4.2)

Oscillations of a steel bar are described with which we will solve with initial conditions
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Figure 6. Velocity of the Duffing oscillator for 2.7 <F, <3.0.
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Figure 7. Velocity of the Duffing oscillator for 54 <F, <6.0.
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Figure 8. Velocity of the Duffing oscillator for 10.8<F, <12.0.

5. LORENZ MODEL where X is convection velocity (this is why F, isin

first equation of these systems of equations), Y is

horizontal component of temperature gradient, z is
vertical component of temperature gradient, o is

We assume that part of the Earth’s
atmosphere is acted by fluctuating force F, (t) and

we solve equations Prandtl number, r is Rayleigh number, b is ratio of
dx (y=X)+F, dimensions of layers of fluid [14]. In original Lorenz
dt o= model F; =0 is assumed. We assume

dy

—==rX—-y—-Xz 5.1

pm y (5.1)

dz

—=Xxy-bhz

at y-

o =10,r =28.3,b=8/3,x(0) =-19.1, y(0) = 21.5,z(0) =-17.8.
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Figure 9. y(t) for —10<F, <0.

Figure 11. y(t) for 10<F, <20.

6. CONCLUSION

We considered four seemingly very different
systems - a double pendulum, a rod magnet that
rotates under the influence of a changing magnetic
field, a steel rod that oscillates and part of the Earth's
atmosphere. The mathematical descriptions of these
systems, (2.1)-(2.4), (3.1)-(3.2), (4.1)-(4.2) and (5.1)
are very different. However, our computer
experiments show that the emergence of order
occurs in all these systems in the same way, by
increasing the intensity of the fluctuating force
acting on them. Approximate periodic motion occurs
after a sufficiently long time if the number of
particles the system is made of and the number of
fluid particles acting on the system are large enough.
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Figure 10. y(t) for 0<F, <10.
y 8
0 50 LT SRR AL AT T BN AN B T A A B
time
Figure 12. y(t) for 20<F, <30 (approximate
periodicity).

There seems to be a universal way of combining
deterministic chaos and stochastics that allows the
emergence of order.
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EMEPI'EHIIMJA YPEBEHOI' KPETAIBA ITPU AJEJIOBABY
OIIVKTYUPAJYRE CUJIE HA OCIIUJIATOP

Caxerak: HanpasibeHH cy padyHapcKH €KCIEPHMEHTH Ca ABOCTPYKHM KIIATHOM,

TaKepOBI/IM OCHWJIATOPOM W  YCIMYHOM IIHMIKOM,

4Hje OCHWIOBAEKE j€ OIHCAHO

Hadunrosum jemHaumnama. [IpermocraBiba ce aa ¢uayun gjenyje GuykTyupajyhoM cuimom
Ha ocumiaTtop. [locMaTpaMo CIIOKEHO KpeTame, Koje je KOMOMHanuja eTepPMUHUCTHYKOT
xaoca u croxactuke. Kaj je unteHsurer Quykryupajyhe cuie 10BOJbHO BeNUK (Tan je 0poj
yectuia quiyraa ca Kojuma ocumiatop meljyajenyje Besmk), Kperame ocuuiIaTopa nocraje
ypeheno. Cnuuan pesyarat gobuje ce y JlopeHIIOBOM Mopeily, Kaj AuO 3eMJbHUHE
aTMocdepe mehymjernyje ca OKOTHUM Ba3gyXxoM.

Kiby4He pujeqn: [1BOCTPYKO KIIATHO, Xa0C, CTOXACTUKA, EMEPIEeHIH]a.
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